3.594 \(\int \sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx\)

Optimal. Leaf size=445 \[ \frac {\sqrt {a+b} (2 A+B) \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{d \sqrt {\sec (c+d x)}}-\frac {\sqrt {a+b} (a B+2 A b) \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{b d \sqrt {\sec (c+d x)}}+\frac {B \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a+b \cos (c+d x)}}{d}-\frac {B (a-b) \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a d \sqrt {\sec (c+d x)}} \]

[Out]

B*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)*sec(d*x+c)^(1/2)/d-(a-b)*B*csc(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+
b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a
*(1+sec(d*x+c))/(a-b))^(1/2)/a/d/sec(d*x+c)^(1/2)+(2*A+B)*csc(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1
/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+s
ec(d*x+c))/(a-b))^(1/2)/d/sec(d*x+c)^(1/2)-(2*A*b+B*a)*csc(d*x+c)*EllipticPi((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2
)/cos(d*x+c)^(1/2),(a+b)/b,((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(
a*(1+sec(d*x+c))/(a-b))^(1/2)/b/d/sec(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.90, antiderivative size = 445, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2961, 3003, 3053, 2809, 2998, 2816, 2994} \[ \frac {\sqrt {a+b} (2 A+B) \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{d \sqrt {\sec (c+d x)}}-\frac {\sqrt {a+b} (a B+2 A b) \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{b d \sqrt {\sec (c+d x)}}+\frac {B \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a+b \cos (c+d x)}}{d}-\frac {B (a-b) \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a d \sqrt {\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*Cos[c + d*x]]*(A + B*Cos[c + d*x])*Sqrt[Sec[c + d*x]],x]

[Out]

-(((a - b)*Sqrt[a + b]*B*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b
]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(
a - b)])/(a*d*Sqrt[Sec[c + d*x]])) + (Sqrt[a + b]*(2*A + B)*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticF[ArcSin[S
qrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a
+ b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(d*Sqrt[Sec[c + d*x]]) - (Sqrt[a + b]*(2*A*b + a*B)*Sqrt[Cos[c + d
*x]]*Csc[c + d*x]*EllipticPi[(a + b)/b, ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((
a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(b*d*Sqrt[Sec[c +
d*x]]) + (B*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/d

Rule 2809

Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[(2*b*Tan
[e + f*x]*Rt[(c + d)/b, 2]*Sqrt[(c*(1 + Csc[e + f*x]))/(c - d)]*Sqrt[(c*(1 - Csc[e + f*x]))/(c + d)]*EllipticP
i[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/(Sqrt[b*Sin[e + f*x]]*Rt[(c + d)/b, 2])], -((c + d)/(c - d))])/(d
*f), x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] && PosQ[(c + d)/b]

Rule 2816

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*
Tan[e + f*x]*Rt[(a + b)/d, 2]*Sqrt[(a*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(a*(1 + Csc[e + f*x]))/(a - b)]*Ellipt
icF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/(Sqrt[d*Sin[e + f*x]]*Rt[(a + b)/d, 2])], -((a + b)/(a - b))])/(a*f), x] /
; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 2961

Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p, Int[((a + b*Sin[e + f*x])^m*(
c + d*Sin[e + f*x])^n)/(g*Sin[e + f*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d
, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && IntegerQ[n])

Rule 2994

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*A*(c - d)*Tan[e + f*x]*Rt[(c + d)/b, 2]*Sqrt[(c*(1 + Csc[e + f*x]))/(c
- d)]*Sqrt[(c*(1 - Csc[e + f*x]))/(c + d)]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/(Sqrt[b*Sin[e + f*x]]*Rt[
(c + d)/b, 2])], -((c + d)/(c - d))])/(f*b*c^2), x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] &&
 EqQ[A, B] && PosQ[(c + d)/b]

Rule 2998

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rule 3003

Int[Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-2*B*Cos[e + f*x]*Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n)/
(f*(2*n + 3)), x] + Dist[1/(2*n + 3), Int[((c + d*Sin[e + f*x])^(n - 1)*Simp[a*A*c*(2*n + 3) + B*(b*c + 2*a*d*
n) + (B*(a*c + b*d)*(2*n + 1) + A*(b*c + a*d)*(2*n + 3))*Sin[e + f*x] + (A*b*d*(2*n + 3) + B*(a*d + 2*b*c*n))*
Sin[e + f*x]^2, x])/Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0
] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && EqQ[n^2, 1/4]

Rule 3053

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(((a_.) + (b_.)*sin[(e_.) + (f_.
)*(x_)])^(3/2)*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[C/b^2, Int[Sqrt[a + b*Sin[e + f
*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] + Dist[1/b^2, Int[(A*b^2 - a^2*C + b*(b*B - 2*a*C)*Sin[e + f*x])/((a + b
*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a
*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x))}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {B \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (c+d x)}{d}+\frac {1}{2} \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-a B+2 a A \cos (c+d x)+(2 A b+a B) \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx\\ &=\frac {B \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (c+d x)}{d}+\frac {1}{2} \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-a B+2 a A \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx+\frac {1}{2} \left ((2 A b+a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}} \, dx\\ &=-\frac {\sqrt {a+b} (2 A b+a B) \sqrt {\cos (c+d x)} \csc (c+d x) \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b d \sqrt {\sec (c+d x)}}+\frac {B \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (c+d x)}{d}-\frac {1}{2} \left (a B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx+\frac {1}{2} \left (a (2 A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx\\ &=-\frac {(a-b) \sqrt {a+b} B \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a d \sqrt {\sec (c+d x)}}+\frac {\sqrt {a+b} (2 A+B) \sqrt {\cos (c+d x)} \csc (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{d \sqrt {\sec (c+d x)}}-\frac {\sqrt {a+b} (2 A b+a B) \sqrt {\cos (c+d x)} \csc (c+d x) \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b d \sqrt {\sec (c+d x)}}+\frac {B \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (c+d x)}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 17.55, size = 787, normalized size = 1.77 \[ \frac {2 (a (B-A)+A b) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \left (\tan ^2\left (\frac {1}{2} (c+d x)\right )+1\right ) \sqrt {\frac {a \tan ^2\left (\frac {1}{2} (c+d x)\right )+a-b \tan ^2\left (\frac {1}{2} (c+d x)\right )+b}{a+b}} F\left (\sin ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {b-a}{a+b}\right )-4 A b \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \tan ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\frac {a \tan ^2\left (\frac {1}{2} (c+d x)\right )+a-b \tan ^2\left (\frac {1}{2} (c+d x)\right )+b}{a+b}} \Pi \left (-1;\sin ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {b-a}{a+b}\right )-4 A b \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a \tan ^2\left (\frac {1}{2} (c+d x)\right )+a-b \tan ^2\left (\frac {1}{2} (c+d x)\right )+b}{a+b}} \Pi \left (-1;\sin ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {b-a}{a+b}\right )-B (a+b) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \left (\tan ^2\left (\frac {1}{2} (c+d x)\right )+1\right ) \sqrt {\frac {a \tan ^2\left (\frac {1}{2} (c+d x)\right )+a-b \tan ^2\left (\frac {1}{2} (c+d x)\right )+b}{a+b}} E\left (\sin ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {b-a}{a+b}\right )-2 a B \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \tan ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\frac {a \tan ^2\left (\frac {1}{2} (c+d x)\right )+a-b \tan ^2\left (\frac {1}{2} (c+d x)\right )+b}{a+b}} \Pi \left (-1;\sin ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {b-a}{a+b}\right )-2 a B \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a \tan ^2\left (\frac {1}{2} (c+d x)\right )+a-b \tan ^2\left (\frac {1}{2} (c+d x)\right )+b}{a+b}} \Pi \left (-1;\sin ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {b-a}{a+b}\right )+a B \tan ^5\left (\frac {1}{2} (c+d x)\right )-a B \tan \left (\frac {1}{2} (c+d x)\right )-b B \tan ^5\left (\frac {1}{2} (c+d x)\right )+2 b B \tan ^3\left (\frac {1}{2} (c+d x)\right )-b B \tan \left (\frac {1}{2} (c+d x)\right )}{d \sqrt {\frac {\tan ^2\left (\frac {1}{2} (c+d x)\right )+1}{1-\tan ^2\left (\frac {1}{2} (c+d x)\right )}} \left (\tan ^4\left (\frac {1}{2} (c+d x)\right )-1\right ) \sqrt {\frac {a \tan ^2\left (\frac {1}{2} (c+d x)\right )+a-b \tan ^2\left (\frac {1}{2} (c+d x)\right )+b}{\tan ^2\left (\frac {1}{2} (c+d x)\right )+1}}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*Cos[c + d*x]]*(A + B*Cos[c + d*x])*Sqrt[Sec[c + d*x]],x]

[Out]

(-(a*B*Tan[(c + d*x)/2]) - b*B*Tan[(c + d*x)/2] + 2*b*B*Tan[(c + d*x)/2]^3 + a*B*Tan[(c + d*x)/2]^5 - b*B*Tan[
(c + d*x)/2]^5 - 4*A*b*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]
*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] - 2*a*B*EllipticPi[-1, ArcSin[Tan[(c + d*
x)/2]], (-a + b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]
^2)/(a + b)] - 4*A*b*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Ta
n[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] - 2*a*B*EllipticPi[-1, A
rcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan
[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] - (a + b)*B*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a +
 b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x
)/2]^2)/(a + b)] + 2*(A*b + a*(-A + B))*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[1 - Tan[(c
+ d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)])/(d*
Sqrt[(1 + Tan[(c + d*x)/2]^2)/(1 - Tan[(c + d*x)/2]^2)]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2
]^2)/(1 + Tan[(c + d*x)/2]^2)]*(-1 + Tan[(c + d*x)/2]^4))

________________________________________________________________________________________

fricas [F]  time = 1.47, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right ) + a} \sqrt {\sec \left (d x + c\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(1/2)*(a+b*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)*sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right ) + a} \sqrt {\sec \left (d x + c\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(1/2)*(a+b*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)*sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

maple [B]  time = 0.49, size = 1369, normalized size = 3.08 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c))*sec(d*x+c)^(1/2)*(a+b*cos(d*x+c))^(1/2),x)

[Out]

-1/d*(1/cos(d*x+c))^(1/2)/(a+b*cos(d*x+c))^(1/2)*(2*A*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*
((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a-2*A
*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*Ellipti
cF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*b+4*A*sin(d*x+c)*cos(d*x+c)*((a+b*cos(d*x+c))/(1+cos(d*x+c
))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,(-(a-b)/(a+b))^(1/2
))*b-2*B*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/
(a+b))^(1/2))*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a+2*B*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x
+c)))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a
+b))^(1/2)*a+B*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))
^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a+B*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos
(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+
b))^(1/2))*b+2*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1
+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*sin(d*x+c)-2*A*sin(d*x+c)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+
b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*b+4*A*s
in(d*x+c)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticPi((-1+cos(d
*x+c))/sin(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*b-2*B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*
x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*sin(d*x+c)+2*B*sin(d*x+c)*Elli
pticPi((-1+cos(d*x+c))/sin(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(
d*x+c)/(1+cos(d*x+c)))^(1/2)*a+B*sin(d*x+c)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d
*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a+B*sin(d*x+c)*((a+b*cos(d*x+c))/(1+c
os(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^
(1/2))*b+B*cos(d*x+c)^3*b+B*cos(d*x+c)^2*a-b*B*cos(d*x+c)^2-B*cos(d*x+c)*a)/sin(d*x+c)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right ) + a} \sqrt {\sec \left (d x + c\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(1/2)*(a+b*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)*sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \left (A+B\,\cos \left (c+d\,x\right )\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\sqrt {a+b\,\cos \left (c+d\,x\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*cos(c + d*x))*(1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))^(1/2),x)

[Out]

int((A + B*cos(c + d*x))*(1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (A + B \cos {\left (c + d x \right )}\right ) \sqrt {a + b \cos {\left (c + d x \right )}} \sqrt {\sec {\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)**(1/2)*(a+b*cos(d*x+c))**(1/2),x)

[Out]

Integral((A + B*cos(c + d*x))*sqrt(a + b*cos(c + d*x))*sqrt(sec(c + d*x)), x)

________________________________________________________________________________________